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SUMMARY

A method for analysing di7erent nesting techniques for the linearized shallow water equations is pre-
sented. The problem is formulated as an eigenvector–eigenvalue problem. A necessary condition for
stability is that the spectral radius of the propagation matrix is less than or equal to one. Two test
cases are presented. The <rst test case is analysed, and e7ects of enforcing volume conservation and
nudging in time are studied. A nesting technique is found that causes no growth of any eigenvectors for
reasonable time steps. This nesting technique is then used on both test cases, and results are compared
to an everywhere re<ned model and a coarse grid model. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Oceanic phenomena cover a wide range of spatial scales. To simulate small-scale eddies or
the �ow around sharp topographic features and submerged installations or discharges of water
requires a very <ne mesh size. Because of the computational cost it will be prohibitive to cover
the whole ocean with this <ne mesh size in the foreseeable future. One way of overcoming
this diAculty is to build hierarchies of nested models with focus on the area of interest. The
success or failure of such e7orts will depend both on the qualities of the basic ocean model
and on the nesting technique. Conclusions on how nested models perform may depend on
the choices of test problems. There is a growing literature describing nested models for the
ocean. Major e7orts include Spall and Holland [1], Oey et al. [2], Fox and Maskell [3; 4],
Laugier et al. [5; 6], Ginis et al. [7], Blayo and Debreu [8], Guillou et al. [9] and Rowley
and Ginis [10]. Also, experiences from the computational �uid dynamics (CFD) literature on
connecting computational sub-domains may be relevant to the ocean model community; see
for instance Lien et al. [11], Hill and Baskharone [12], Chen et al. [13] and Teigland and
Eliassen [14].
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164 Y. HEGGELUND AND J. BERNTSEN

The nesting procedure should preferably conserve �uxes of mass, heat and momentum
across the interfaces. In meteorology such a scheme was developed by Kurihara et al. [15].
Berger and Leveque [16] have developed general adaptive mesh re<nement algorithms for
hyperbolic systems that also are conservative across interfaces. Ginis et al. [7] applying the
technique proposed by Kurihara et al. [15] developed a nested primitive equation model that
did not <ctitiously increase or decrease the transports of mass, momentum and heat through the
dynamical interface. Angot and Laugier [17] address the continuity and conservation properties
across interfaces. Rowley and Ginis [10] included a mesh movement scheme in the nested
ocean model and stated that mass, heat and momentum are conserved during the movement.
The model applied in these two studies is based on the reduced gravity assumption so that the
deep ocean is at rest below the active upper ocean, and the variables were discretized on non-
staggered grids. More general circulation models for the ocean often split the velocity <eld
into external and internal modes and apply di7erent time steps for the two modes. Staggered
grids, typically B or C grids [18], are often applied to reduce errors in the phase speeds.
This complicates the bookkeeping of �uxes across mesh interfaces, and to our knowledge no
nested ocean model based on mode splitting and staggered grids conserve �uxes across mesh
interfaces [1–3]. Spall and Holland [1] state that for short time integration this may not be
critical whereas for climate studies conservation is most likely to be a critical issue.

Most papers describing nested ocean modelling e7orts discuss stability problems and
un-smooth solutions across the interfaces. Spall and Holland [1] <nding support in Zhang
et al. [19] state that it may be necessary to sacri<ce exact conservation to obtain smooth,
stable solutions. To stabilize and smooth the solutions we <nd that combinations of horizontal
and vertical di7usion, <ltering the solutions in time and relaxation techniques or nudging are
often applied.

In the literature, both one-way and two-way interaction between the coarse and the <ne
grid have been considered. In a one-way nesting, information is interpolated from the coarse
grid to the <ne grid, but there is no feedback from the <ne grid. Phillips and Shukla [20]
argue that a two-way interaction gives a more correct solution on the <ne grid and therefore
is more favourable. The nesting described in References [1; 2; 7] for instance, is two-way.
However, a two-way interaction may introduce instabilities at the interface between the two
grids, and such instabilities may severely degrade the solution, see Zhang et al. [19]. In some
studies data from previously run coarse grid models are used to drive <ne grid models, see for
instance References [21; 22]. Fox and Maskell [4] compared one-way and two-way nesting
and concluded that using the model in one-way nesting mode resulted in more noise at the
<ne grid mesh boundaries with negligible decrease in computer time.

In order to provide boundary condition for the <ne grid, the coarse grid variables must be
interpolated to the <ne grid. There are numerous techniques that are potentially interesting for
performing this task and some of these are considered recently by Alapaty et al. [23]. Based
on studies with an idealized test case they conclude that zeroth-order interpolation may create
large phase errors, quadratic interpolation may create overshooting and they suggest the use
of advection equivalent interpolation schemes.

Nested model grids may be adaptive and movable or static. In order to follow evolving
oceanic features such as wave fronts and propagating eddies it may be bene<cial to apply
for instance adaptive mesh re<nement methods for hyperbolic systems described by Berger
and Oliger [24] or more recently by Berger and Leveque [16]. Blayo and Debreu [8] have
recently applied this technique to study the propagation of the barotropic modon and with a
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multi-layered quasi-geostrophic model. Rowley and Ginis [10] in their model based on the
reduced gravity assumption included a mesh movement scheme. However, as far as we know
nested general circulation models with movable meshes have not yet been implemented. To run
nested ocean models with large numbers of grid cells on each level is very CPU demanding
and to allow the grids to evolve dynamically will add to the computational cost and the
complexity of the coding.

Spall and Holland [1] apply the same time step both on the coarse and the <ne grid arguing
that the coarse grid contributes little to the overall expense and that it would add an additional
level of computational complexity for very little gain to have di7erent time steps on the two
grid levels. With equal Courant numbers on all levels the quality of the wave propagation
relative to the mesh size will be approximately the same, and most of the more recent papers
on nesting also re<ne the time step with the same factor as the spatial resolution, keeping the
Courant numbers constant.

A topic for debate in the literature on ocean model nesting is the degree of re<nement
from one level to the next. Grid ratios from 2:1 to 7:1 have been applied. Spall and Holland
[1] conclude that 3:1 and 5:1 ratios perform quite well, and even ratios of 7:1 are able to
reproduce the solution reasonably well while the features are mostly contained within the <ne
region. To apply small ratios like 2:1, which is used for instance in Rowley and Ginis [10],
may force us to apply many grid levels before we achieve the resolution we would like to
have in a given area. On the other hand, large ratios may cause instabilities and un-smooth
solutions across the interfaces.

There are numerous combinations of basic ocean models and nesting techniques that are
potentially interesting and evidence on how such combinations perform is gradually growing
as they are applied both to idealized test cases and to more realistic oceanic problems. The
problems addressed so far range from advection of a simple cone, see Alapaty et al. [23],
through the barotropic modon and baroclinic vortex suggested by Spall and Holland [1] and
applied as a test case in References [5] and [17] for instance, to more realistic problems like
the Norwegian Coastal Current described in Reference [2].

The stability properties of numerical methods are often studied with the Fourier or the
von Neumann method. This is the approach applied in Povitsky and Wolfshtein [25] where
a multi-domain method for the solution of elliptic CFD problems is described and analysed.
E7ects of the internal boundaries are included in the analysis. Their study is for a single linear
equation and constant coeAcients. The insight by von Neumann analysis is important, but it
is diAcult or impossible to extend this method to, for instance, the shallow water equations
with variable topography or variable Coriolis parameter.

To complement the experiences gained through numerical experiments and von Neumann
analysis, a method for analysing nesting techniques based on studying the properties of the
propagation matrices is suggested. Let NU n be the complete state vector at time level n. A
method for estimating the state at level step n+ 1 may then be described

NU n+1 = G( NU n) NU n

where G( NU n) is the propagation matrix. For real ocean models the length of state vectors
makes it infeasible to set up the full propagation matrices. However, for simpli<ed equa-
tions and very limited numbers of grid points, the propagation matrices may be constructed.
For linear equations and with linear methods the matrices will be constant and the stability
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properties will depend on the eigenvalues of G. The absolute value of the largest eigenvalue
must be less than or equal to 1 to avoid growth.

In this study various techniques for building nested models for the linearized shallow water
equations are analysed. It is shown that for the ideal purely hyperbolic case, one-way nesting
causes no stability problems as long as the method on each grid level is stable. However, if
the solution at the <ne grid is fed back to the coarse grid, one may expect a growth in energy
unless some stabilizing techniques are applied. In particular, the enforcement of conservation
of volume may create instabilities.

Our set of equations represents a hyperbolic system, which implies that the total energy
should stay constant in time. A necessary criterion for the stability of the nested model is
non-growth of energy. Exact energy conservation for all possible eigenvectors seems to be
impossible to achieve in a two-way nested model. Some <ne scale waves propagating out
from the <ne grid may not be represented on the coarse grid. The criterion used here is
therefore a weaker one; we accept a nesting algorithm if the total energy is non-growing in
time for all possible modes.

Non-growth of energy in this simpli<ed system is a necessary, but not suAcient criterion
for non-growth of energy in a nested version of a full ocean model.

The formulation of the problem as an eigenvalue–eigenvector problem, helps us determine
exactly what growth rate=damping rate of the energy to expect in a speci<c nesting procedure,
and also which eigenvectors that are most problematic. It is also a way to establish if one can
expect growth of energy with a speci<c nesting scheme without actually having to integrate
the model in time.

The method for analysing stability may be extended to include variable coeAcients like
topography or Coriolis parameter. When including non-linearities, the eigenvalues will become
time dependent, but also for this case the method may be used to study how the growth factors
develop over time.

A nesting procedure based on the conclusions from the present study has been implemented
for the Bergen Ocean Model (BOM) which solves the Reynolds averaged Navier–Stokes
equations and applied to the Norwegian Sea with focus on the shelf break; see Heggelund
and Berntsen [26].

2. THE BASIC EQUATIONS

The governing equations are the linearized shallow water equations for a �at bottom area
(Equations (1)–(3)).
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UA and VA are the horizontal transports in the x- and y-direction respectively, � is the surface
elevation and H is the constant depth.

This system of equations is discretized in space and time, and integrated in time using the
forward–backward method on the C-grid.

The discretized equations can be written as

Un+1
Aij =Un

Aij −QtgH (�nij − �ni−1j)=Qx (4)

Vn+1
Aij = VnAij −QtgH (�nij − �nij−1)=Qy (5)

�n+1
ij = �nij −Qt[(Un+1

Ai+1j
−Un+1

Aij )=Qx + (Vn+1
Aij+1

− Vn+1
Aij )=Qy] (6)

where Qx and Qy are the grid spacings in the x- and y-direction respectively, Qt is the time
step, the superscript denotes the time level, and the subscript denotes the grid index.

There is no di7usion or viscosity except for numerical di7usion.

3. THE NESTING PROCEDURE

Figure 1 shows a portion of the nested grid. The grid is staggered, meaning that the velocities
are given at cell interfaces and the surface elevation is given at the cell centre. When choosing
the grid ratio between the coarse and the <ne grid, two con�icting considerations have to be
taken into account. With a large grid ratio, much of the <ne scale phenomena on the <ne grid
is not resolvable on the coarse grid. This may cause increased disturbance of signals passing
from the <ne grid to the coarse grid. On the other hand, a small ratio may force us to apply

Figure 1. Portion of the nested grid. The coarse grid points are denoted by large symbols,
and <ne grid points with small symbols.
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Figure 2. Interpolation of ghost cell �-values. The interpolation method is bilinear interpolation of the
four closest coarse grid �-values, except for the ghost cells near boundaries (region marked (1) in the

<gure), where the value interpolated to the nearest open circle in the <gure is used.

many grid levels before achieving a desired resolution in a given area. Based on results from
Spall and Holland [1], we have chosen a grid ratio of 5 : 1. The time step on the <ne grid
model is 1=5 of the time step on the coarse grid model.

Boundary values for the <ne grid are interpolated from the coarse grid solution, and are
given at the input interface points (see Figure 1). Then the <ne grid model is advanced <ve
time steps until reaching the same time level as the coarse grid model. The computed <ne
grid <eld values on and inside the feedback interface (see Figure 1) may then be used to
update the coarse grid model values.

3.1. Interpolation and restriction operators

The �-values in the ghost cells are found using a bilinear interpolation of the four nearest
�-points on the coarse grid. This is illustrated in Figure 2. An exception is made near the solid
boundaries (the region marked ‘1’ in Figure 2). Here the value interpolated to the nearest
open circle is used, in order to avoid extrapolation and overshooting.

The velocities in the ghost cells are also found using a bilinear interpolation of the four
nearest coarse grid velocities. The normal velocities are interpolated both inside and outside
of the interpolated �-values. In order to improve the volume conservation in the interpolation
step and in order to avoid overshooting, special exceptions are made to the normal veloc-
ities near the solid boundary and near corners of the re<ned region (region ‘1’ and region
‘3’ of Figure 3), where the value interpolated to the nearest open circle is used. For the
tangential velocities, see Figure 4, no exceptions are made near solid boundaries or near
corners.
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Figure 3. Interpolation of normal velocities. The interpolation method is bilinear interpola-
tion of the four nearest coarse grid U -values. Exceptions are made near the solid bound-
aries (region ‘1’), and near the corners of the re<ned area (region ‘3’), where the value

interpolated into the nearest open circle is used.

The boundary values for � and the velocities in the ghost cells are prescribed before every
<ne grid time step, overwriting any changes that might have occurred in the <ne grid time
step.

We have used two di7erent methods for the restriction operator. Common for both methods
is that corrections for coarse grid UA and VA, are found by <ve-point averages of the <ne point
values at the coarse grid interface. One of the methods uses a 25-point average for �, while
the other method uses the already restricted UA and VA to correct the coarse grid � inside and
just outside the nested region. The latter method ensures volume conservation on the coarse
grid.

3.2. Energy considerations

The hyperbolic system of equations used in this test case is energy conserving. In the absence
of nesting the total energy of the system should therefore stay constant in time.

For long time integrations it is important to conserve volume and momentum, and the
nesting should be such that signals may pass through the interface between the two grids
without much disturbance. The requirement for the energy is that it should not grow.

The restriction operator used for the velocity does not cause the kinetic energy density to
grow. This is because the square of an average value is always smaller than or equal to the
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Figure 4. Interpolation of tangential velocities. The interpolation method is bilinear interpolation
of the four nearest coarse grid V -values.

average of squared values, see Equation (7).

Na =
a1 + a2 + · · ·+ an

n

⇒ Na26
a21 + a22 + · · ·+ a2n

n
(7)

This means that the restriction operator may reduce, but not increase the kinetic energy when a
signal passes the interface from the <ne grid area to the coarse grid area. A similar argument
holds for the 25-point restriction operator for the surface elevation—it will not cause the
potential energy to grow.

Even though the restriction operator and the interpolation operator individually do not cause
the energy to grow, a two-way interaction between the grids may still cause growing energy
for some modes.

4. STABILITY ANALYSIS OF TEST CASE 1

The <rst test case has a very simple geometry. The coarse grid model consists of 4× 4
grid cells with grid spacings QX =QY =20000 m. The lower right corner of the domain is
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re<ned with a 5× 5 mesh (not including ghost cells) with grid spacings Qx=Qy=4000 m.
The equilibrium depth, H , is constant equal to 200 m.

Assume furthermore closed boundaries with no-�ow boundary conditions; thus either UA = 0
or VA = 0 at each point on the boundary.

One way of analysing di7erent nesting methods is to set up in detail the propagation
matrices for di7erent test cases involving only a limited number of variables. The eigenvalues,
eigenvectors and spectral radius for the complete propagation matrices for di7erent nesting
techniques may then be computed. A necessary condition for stability of a technique is that
the spectral radius is less than or equal to one for the simpli<ed test case. At the same time
we want as little damping as possible of at least the longer wave modes through the interfaces
between coarse and <ne grid.

For test case 1 there are totally 187 wet point variables counting UA, VA and �-points on
the coarse grid, the <ne grid and in the interfaces. We may gather all 187 variables in a 1-D
vector W . The method for propagating the solution from coarse time level n to coarse time
level n+ 1 may then be written

Wn+1 =GWn

where G is the 187× 187 propagation matrix. The matrix G may be constructed by the
following algorithm:

Step (i) Forward step in UA and VA on the coarse grid:

G= I + QtgHA

where A is the matrix connecting UA and VA on the coarse grid to the �-points on
the coarse grid. Matrix elements linking coarse grid UA-points to the neighbouring �-
points are ±1=Qx;− for the east neighbours and + for the west neighbours. Similarly
the matrix elements linking coarse grid VA-point to the neighbouring �-points are
±1=Qy.

Step (ii) Backward step in � on the coarse grid:

G=(I + QtB)G

where B is the matrix connecting �-points on the coarse grid to UA and VA-points
on the coarse grid. Matrix elements linking coarse grid �-points to the neighbouring
UA-points are ±1=Qx;− for the east neighbours and + for the west neighbours. Simi-
larly the matrix elements linking coarse grid �-point to the neighbouring
VA-points are ±1=Qy.

Step (iii) Repeat for the <ne grid <ve times:
Interpolate values from the coarse grid to the ghost cells of the <ne grid.

G=(I + INEW)G + IOLD

where INEW and IOLD are the matrices coupling coarse grid values to <ne grid
ghost cells from values at the new and the old time levels respectively. The spatial
operations in the interpolation step are as described in Section 3.

Forward step in UA and VA on the <ne grid.

G=
(
I +

Qt
5
gHC

)
G
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where C is the matrix connecting UA and VA on the <ne grid to the �-points on the
<ne grid.

Backward step in � on the <ne grid.

G=
(
I +

Qt
5
D
)
G

where D is the matrix connecting �-points on the <ne grid to UA and VA-points on
the <ne grid.

Step (iv) Restriction step: feedback from the <ne to the coarse grid

G=(I + DRAG ∗ R)G
where I is the identity matrix, R the matrix coupling <ne grid values to coarse grid
values and DRAG a coeAcient de<ning the strength of the feedback from the <ne
grid values. The spatial averaging from <ne to coarse grid is described in Section 3.

After repeating the steps above the propagation matrix G that brings all variables from
time level n to time level n+ 1 is de<ned, and the LAPACK library [27] is then applied to
compute eigenvalues and eigenvectors.

There are in<nitely many combinations of methods that are potentially interesting for the
sub-steps above that may be analysed. We give some results for seven combinations:

Method 1 No coupling between the two grids.
That is: R is the null matrix in the restriction step and INEW and IOLD null matrices in
the interpolation step.

Method 2 One-way nesting.
In the restriction step R is the null matrix and INEW and IOLD are achieved by linear
interpolation in time between values of the coarse grid variables at the new and the old
time levels.

Method 3 Two-way nesting with averaging of UA, VA and � from the <ne to the coarse grid.
In the restriction step DRAG is chosen to be one, and INEW and IOLD are achieved by
linear interpolation in time between values of the coarse grid variables at the new and the
old time levels.

Method 4 Two-way nesting as above, but with a Newtonian feedback from the <ne to the
coarse grid.
In the restriction step DRAG is chosen to be DT=900, that is, the feedback from the <ne
to the coarse grid is represented by a Newtonian forcing term giving that the coarse grid
values overlapping with <ne grid values are forced towards averages of the corresponding
<ne grid values on a time scale of 900 s, see Kurihara and Bender [28].

Method 5 Two-way nesting with averaging of UA and VA and enforcing volume conservation.
In the restriction step coarse grid values of UA and VA at the interface is computed as
averages of the <ne grid values. Then the coarse grid values of � at both sides of the
interfaces are corrected according to the changes in �uxes across the boundaries due to
the corrections in UA and VA, see Berger and Leveque [16]. In the restriction step DRAG
is chosen to be one, and INEW and IOLD are achieved by linear interpolation in time
between values of the coarse grid variables at the new and the old time levels.

Method 6 Two-way nesting as above, but with a Newtonian feedback from the <ne to the
coarse grid.
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Figure 5. Maximum possible growth over 1 h given by �3600=DT
max where �max is the absolute value of the

largest eigenvalue. On the horizontal axis values of the time steps in seconds are given.

In the restriction step DRAG is chosen to be DT=900, except for this the method is equal
to Method 5.

Method 7 As Method 6, but after the feedback step, the surface elevation on the <ne grid is
corrected uniformly by a constant value in order to achieve global volume conservation.

For each method and for various choices of coarse time steps all eigenvalues of the
propagation matrices are computed. The maximum possible growth over 1 h is given by
�3600=DT

max where �max is the absolute value of the largest eigenvalue. These maximum growth
rates are given in Figure 5.

At the coarse grid there are altogether 15 eigenmodes that are possible. We are solving
a purely hyperbolic problem and ideally the size of all eigenvalues should be 1. However,
including nesting between the grids, we must expect at least some of these modes to die out
over time since waves on the <ne grid may not be represented on the coarse grid. To study
such e7ects we have computed N�3600=DT where N� is the average value of the absolute values
of the 15 largest eigenvalues. The values are given in Figure 6.

From Figures 5 and 6 it is con<rmed that with no coupling between the grids (Method 1)
there is no growth or damping when using the forward–backward method to solve the lin-
earized shallow water equations without Coriolis term for a �at bottom. The same applies for
the one-way nesting case (Method 2). Then the stability of the solution on the coarse grid
determines the total stability, and as this solution gets no feedback from the <ne grid, it is
stable.

Conservation of volume in the restriction step, following the ideas of Berger and Lev-
eque [16] (Method 5), causes an unphysical growth for all reasonable time steps. Zhang
et al. [19] also point out that it may be necessary to sacri<ce conservation between the two
grids, and Spall and Holland [1] do not conserve �uxes in their nested ocean model. Fox and
Maskell [3] adapt the nesting procedure of Spall and Holland and also sacri<ce conservation.
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174 Y. HEGGELUND AND J. BERNTSEN

Figure 6. Average growth=damping over 1h given by N�3600=DT where N� is the average
value of the absolute values of the 15 largest eigenvalues. The symbols used for the

di7erent methods are as in Figure 5.

They argue that this is not critical in short-term forecasting, but for longer term integrations
it will be necessary to conserve �uxes.

Unphysical energy growth may be experienced when using straightforward averaging of <ne
grid values of UA; VA and � in the restriction step (Method 3) without enforcing conservation,
but for some unclear reason the growth is less sensitive to the time step than Method 5.

The idea of correcting the solution on the coarse grid using Newtonian forcing (Methods
6 and 7) may stabilize the solution. When using Method 6, there is no growth for time steps
larger or equal to 100 s. It is time steps in this range we would like to apply in larger and
more realistic experiments. Using a timescale of 900s for the forcing, we may still experience
growth for the smaller time steps, but by modifying this timescale we may avoid this growth.

Correcting the surface elevation in order to achieve global volume conservation (Method 7)
seems to destabilize the nesting technique slightly on the larger time steps. This could probably
be overcome by adjusting the timescale of the Newtonian forcing, but this has not been
explored in this report.

From Figure 6 we notice that for all two-way nested methods the wave modes in average
lose energy. For the larger time steps the losses seem to be greater when using Method 5
than Method 3. The losses are considerably reduced when Newtonian forcing is introduced
in the restriction step.

Based on the above results, Method 6 seems to be a promising technique. It is stable for
all time steps we would like to apply.

Two eigenmodes and their energy development are shown in Figures 7 and 8. Figure 7
shows the most unstable eigenmode for Method 6 with a 10 s time step. The energy grows
in accordance with the analysis. Figure 8 shows a stable eigenmode with little damping for
Method 6 with a 200 s time step. The energy damping is also here in accordance with the
analysis.
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Figure 7. Surface signature and energy development of an unstable mode. The nesting
method is Method 6. The timestep is 10 s.

Figure 8. Surface signature and energy development of a stable mode. The nesting method is
Method 6. The timestep is 200 s.

5. TEST RUNS

Test runs for the analyzed case and a case with di7erent geometry are presented. The nesting
method used is Method 6 from Section 4. The results from the nested case are compared with
an everywhere <ne grid model and a coarse grid model.

5.1. Test case 1

The <eld is initialized with �=1m at the lower right coarse grid corner (the whole <ne grid
mesh) and zero elsewhere. The velocity <eld is initialized to zero everywhere.

The time step on the coarse grid is set to 180 s, which implies a Courant number Co of

Co=
Qt
Qx

√
2gH ≈ 0:56

This time step is within the region of stability for Method 6, see Figure 5, so no growth of
energy should occur.
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Three runs were made. One with the nested model, one with an everywhere <ne grid model
and one with a strictly coarse grid model. The results are shown in Figure 9.

5.1.1. Comparison of the surface elevation. Note: When drawing the contour lines for �, in-
terpolation has to be made on the �-<eld. In all plots, we have interpolated the <eld values
to a grid with twice the resolution as the <ne grid everywhere. The e7ect of the interpolation
can be very clearly seen in the initial structures in Figure 9. The di7erences seen here are
caused purely by interpolations from di7erent data points.

Because of the initial condition, all the plots of surface elevation should be symmetric about
the diagonal from the upper left corner to the lower right corner. This is a way to check that
the nesting is done symmetrically.

When comparing the nested model with the <ne grid everywhere model, the phase speed
in the nested model seems to be consistent but not identical to the <ne grid model phase
speed. After 3600 s of simulation, the two solutions have diverged—probably because of
small di7erences in the phase speed.

Comparison of the nested grid solution to the coarse grid solution, shows that the solutions
in the coarse part of the domain are very similar. Some evidence of wave re�ection when the
disturbance passes from the <ne grid to the coarse grid can be seen.

5.1.2. Energy. The total energy density development on the coarse grid and the nested grid is
shown in Figure 10. The total energy density is the sum of kinetic and potential energy divided
by the total volume. In the coarse grid the energy stays statistically constant. The reason for
the �uctuations in the energy is that the solution shifts between the real and imaginary parts
of the eigenvectors. The nested model looses total energy as expected. The timescale of the
energy loss is, however, much larger than the time it takes for the wave to cross the basin
and come back. The timescale of the wave to travel across the basin and come back can be
estimated to about 1 h, while the energy has halved in about 10 h.

5.1.3. Volume. The total volume of the water in the coarse grid and the nested grid is
shown in Figure 11. This quantity is conserved on the coarse grid with Method 6, but not
globally, as this depends on the interpolation operator. Although the volume is oscillating
as the signal crosses the interface between the two grids, no long-time growth or decay can
occur.

The volume stays at 1:2804× 1012 m3 ± 5× 107 m3. With a depth of 200 m, the variation
of the volume is on the order of 1=64 of the volume of a <ne grid cell. This small variation
was corrected for in Method 7 in Section 4, but it was shown that this correction could give
a slight growth of energy when using large time steps.

5.2. Test case 2

In the second test case the coarse grid domain is still 4× 4 cells, but the lower left coarse
grid cell is removed, and the three coarse grid cells around the removed cell are re<ned. The
<eld is initialized with �=1 m along the upper boundary and zero elsewhere. The velocity
<eld is initialized to zero everywhere. Three runs were made with this test case also; nested
grid, everywhere <ne grid and everywhere coarse grid.
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Figure 9. Case 1. Comparison of surface elevation between the nested grid, coarse grid and <ne grid
models. The boundary of the nested area is shown with the dash–dot lines.
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Figure 9. Continued.
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Figure 10. Test Case 1. The total energy development in the coarse grid model and the nested model.

Figure 11. Test Case 1. The total volume development in the coarse grid model (solid line)
and the nested grid model (dotted line).

5.2.1. Comparison of surface elevation. The nested model shows less structure on the re<ned
grid than the <ne grid everywhere model (Figure 12). This is because the wave front is not
well resolved in the coarse grid model, and therefore is not as sharp as the <ne grid everywhere
model when it enters the nested area. Because of this, these two cases have somewhat di7erent
forcing in this area.

Comparison of the nested model to the coarse grid model shows that the coupling from
the <ne grid area in the nested model can change the solution in the coarse grid part of the
nested model area. From the last column in Figure 12, we <nd that the area with negative
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Figure 12. Case 2. Comparison of surface elevation between the nested grid, coarse grid and <ne grid
models. The boundary of the nested area is shown with the dash–dot lines.
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Figure 12. Continued.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:163–185



182 Y. HEGGELUND AND J. BERNTSEN

Figure 13. The speed and the phase at the corner of the removed coarse grid cell in the <ne grid
everywhere model (solid) and the nested model (dotted).

surface elevation in the lower half of the plot is shifted to the right in the nested model,
which seems more consistent with the solution on the <ne grid everywhere model than the
solution on the coarse grid model.

5.2.2. Speed and phase at the corner of the removed cell. As another tool for investigating
the e7ect of the nesting, we study the speed (=

√
((UA)=(H))2 + ((VA)=(H))2) and the phase

of the speed near the upper right corner of the removed coarse grid cell. A phase of 0 or 2�
means that the speed is directed northward. A comparison is made in Figure 13, where the
speed and phase in the <ne grid everywhere model is compared to the speed and phase in
the nested model the <rst 2 h of simulation.

The developments of the speeds and phases are very similar, with somewhat less structure
in the nested model. This shows that the nesting technique e7ectively transports the wave
through the interface of the nested area. The amplitude of the speed in the nested model is
initially somewhat larger than the <ne grid model, but after a while the speed in the nested
model is always smaller than the <ne grid model.

5.2.3. Energy. The total energy density development on the coarse grid and the nested grid
is shown in Figure 14. As in Test Case 1 the nested model looses energy as expected. The
timescale of the energy loss compared to the timescale of the wave to travel across the basin
and return is about 10:1.

5.2.4. Volume. As in Case 1, the volume in the nested case does not grow or decay on
average, see Figure 15. The volume stays at 1:2016× 1012 m3 ± 5× 107 m3. The variation
equals about 1=64 the volume of a <ne grid cell.

6. CONCLUSIONS

In this report, we have described a method for analysing the stability of di7erent nesting
techniques for the linearized shallow water equations. The analysis involves constructing the
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Figure 14. Test Case 2. The total energy development in the coarse grid model and the nested model.

Figure 15. Test Case 2. The total volume development in the coarse grid model (solid line)
and the nested grid model (dotted line).

propagation matrix for a particular test case, and calculating its eigenvalues. An eigenvalue
greater that one means that the nesting technique is unstable.

Although the analysis is speci<c to a particular test case, and the propagation matrix has
to be constructed again for di7erent test cases, stability for a particular test case is still a
necessary condition for stability of test cases with di7erent geometry.

The nesting technique that seems most promising for the analysed test case is implemented
for another test case with di7erent geometry. No growth of energy could be seen in this test
case either, which indicates that the result may be valid for an even larger class of test cases.
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It is demonstrated that methods focusing only on conservation of volume and mass may
be unstable. A major <nding is that the use of Newtonian forcing in the feedback step from
the <ne grid to the coarse grid may stabilize the solution. By adjusting the timescale of this
forcing, the degree of feedback from the <ne grid to the coarse grid may be adjusted. With
no feedback (in<nite timescale), the solution is stable for all considered time steps, while
stronger feedback may destabilize the solution.

Another factor that seems to stabilize the computation when used together with the Newto-
nian forcing is to correct the surface elevation on the coarse grid in order to achieve volume
conservation. Volume conservation on the coarse grid is achieved by this technique.

There is almost an in<nite number of nesting techniques that could have been tested. Among
the methods tested here, the method based on volume conservation and Newtonian forcing
(Method 6), seems to be a promising one. This method is used for two test cases and seems
to give reasonable results when the surface elevation is compared to an everywhere re<ned
model and an everywhere coarse grid model.

An advantage with the method of reformulating a given problem to an eigenvalue–eigen-
vector setting, is that it gives an additional way to check the correctness of the code. Starting
with eigenvectors with known growth=damping rate, and demonstrating that the eigenvector
indeed grows with the predicted rate is a robust check of the consistency of the coding.

The method described here may be extended to more complex settings. Natural extensions
would be to include variable topography and Coriolis force. One could also increase the
number of cells in the case to be analysed, but there is an obvious advantage of keeping the
number of cells low. More cells will increase the condition number of the matrix, and the
accuracy of the eigenvalues will decrease as a result.
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